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Abstract. The Casimir effect for conductors at arbitrary temperatures is studied theoretically.
By using the analytical properties of the Green functions and applying the Abel–Plana formula to
Lifshitz’s equation, the Casimir force is presented as a sum of temperature dependent and vacuum
contributions of the fluctuating electromagnetic field. The general results are applied to the system
consisting of a bulk conductor and a thin metal film. It is shown that the characteristic frequency
of the thermal fluctuations in this system is proportional to the square root of the thickness of the
metal film. For the case of sufficiently high temperatures when the thermal fluctuations play the
main role in the Casimir interaction, this leads to the growth of the effective dielectric permittivity
of the film and to the disappearance of the dependence of Casimir’s force on the sample thickness.

1. Introduction

The theoretical and experimental study of the Casimir effect has more than fifty years of history
(see, for example, reviews [1,2]). The Casimir effect for plane-parallel dielectric surfaces was
worked out by Lifshitz [3] and Schwinger et al [4,5]. The kernel of this phenomenon consists
in the fluctuation electromagnetic interaction of uncharged bodies. The Casimir energy of a
dielectric ball in vacuum was evaluated in Refs. [6–9]. Different methods have been used for
dealing with the Casimir effect: the complex contour integration method [7, 10], the Hurwitz
zeta function method [10,11], and the zeta function technique in combination with the contour
integral representations [12, 13].

Measurements of the Casimir force between metal bodies was performed with a good
experimental accuracy only recently [14,15]. For metals with a high value of the conductivity
σ , the Casimir interaction manifests itself as the attractive force f0 (per unit area) which varies
as the inverse fourth power of the distance a between the plates [16]:

f0 = − π2

240

h̄c

a4
(T = 0, σ → ∞) (1)

where c is the speed of light and T is the temperature.
With an increase of the temperature, but for

kT

h̄
� c

a
(2)
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an additional term proportional to the fourth power of the temperature appears in the Casimir
force (see [2] and references therein):

�f (T ) = −π2

45

(kT )4

(h̄c)3
. (3)

This term was derived under an assumption that thermal equilibrium between the matter and
the radiation occurs. The additional a-independent attractive force between the metal plates
arises as a result of the pressure of the thermal radiation outside the plates. Under the inverse
inequality

kT

h̄
� c

a
(4)

the Casimir force is completely defined by the temperature and is described by the formula

f (T ) = −ζ(3)
kT

8πa3
(5)

with exponential accuracy [3, 17–19]. Here ζ(x) is the zeta function, ζ(3) ≈ 1.202. For
T = 300 K, the parameter h̄c/kT is about 10 µm. So, the Casimir force between the bulk
metal plates displays a weak temperature dependence (equation (3)) in the range of realistic
separations a of about 0.1–1 µm.

The temperature effects in the Casimir force could be brought to the forefront if the
interacting objects are thin metal films. Indeed, formula (1) is obtained under an assumption
that the thickness d of the plates is the greatest parameter with the dimension of length. As
was shown in [20,21], the asymptotical formula (1) appears to be invalid for thin metal plates
if the inequality

ωp

√
d

a
= ωc � ωp,

c

a
(6)

is satisfied. Here ωp is the plasma frequency and ωc is the characteristic frequency of the
fluctuating electromagnetic field. In this case the collective properties of the electron subsystem
of the metal are important in forming the Casimir force. Specifically, the evaluation

f0 ∝ − h̄ω2
c

ν + ωc

1

a3
(T = 0) (7)

is valid if the metal film of thickness d with a weak reflecting power interacts with the bulk
metal (ν is the frequency of the electron bulk collisions). A decrease of the absolute value of
the Casimir force f (T = 0) makes the temperature dependence f (T ) pronounced even in the
range of realistic separations a ∼ 0.1–1 µm. The study of this dependence is the subject of
this letter.

2. Statement of the problem. The basic equations

The general formula for the force of Casimir interaction between dielectric slabs with arbitrary
dielectric constants ε was originally derived by Lifshitz [3] (see, also, [4, 5, 22, 23]). The
Casimir force is presented in this formula as a functional defined on the set of functions ε(iωn)

of a discrete variable ωn = 2πnkT (n = 0, 1, 2, . . .). We use Lifshitz’s formula for the system
comprising a bulk conductor and a thin metal film of thickness d separated by a distance a. The
system of coordinates is chosen such that the x-axis is perpendicular to the plane of interacting
plates. The conductivity of our system as a function of the coordinate x is

σ(x) = σ [θ(−x + a + d) − θ(−x + a)] + σ∞θ(x) =




0 x ∈ SI x ∈ SIII

σ x ∈ SII

σ∞ x ∈ SIV

(8)
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where θ(x) is the Heaviside function, SI = (−∞, −a − d) and SIII = (−a, 0) are vacuum
domains and SII = (−a − d, −a) and SIV = (0, ∞) are regions occupied by the metal film
and the bulk conductor, respectively. We do not make any specific supposition about the
conductivity σ∞ of the bulk conductor because its value does not affect the final result. As
for the conductivity of the metal film, we take it in the τ -approximation with the following
frequency dependence:

σ(ω) = ω2
p

ν − iω
. (9)

Lifshitz’s formula for the Casimir force can be expressed in terms of the conductivity (8)
of our system:

F [σ ] = −kT

∞∑
n=0

′ ∫
d�r δσ (M)(x|ωn)

δa
�

(M)
ii (�r, �r|ωn) (10)

where Matsubara’s conductivity σ (M)(ωn) is related to the frequency dispersion of the metal
conductivity σ(ω) by the espression

σ (M)(ωn) = σ(iωn). (11)

�(M) is the temperature Green function of the electromagnetic field; the prime on the sum
symbol indicates that the term with n = 0 is taken with half the weight. By using the
analytical properties of the Green functions and the Abel–Plana formula for summing the
series, equation (10) can be rewritten in the integral form (see the appendix):

F [σ ] = − 1

2π

∫
d�r
{∫ ∞

0
dζ

δσ (x|iζ )

δa
�ii(�r, �r|iζ )

+2
∫ ∞

0
dωIm

[
δσ (x|ω)

δa
�ii(�r, �r|ω)

]
(eh̄ω/kT − 1)−1

}
. (12)

The first term in equation (12) describes the Casimir force at zeroth temperature and is
obtained from equation (10) through the simple change of the summation by integrating over
the imaginary frequency. The second term provides the temperature-dependent contribution
to the Casimir force which is suppressed by the small exponential factor exp(−h̄ω/kT ) at
T → 0. In contrast to the low-temperature case, this term can be governing in the force (12)
at sufficiently high temperatures.

In order to simplify the general formula (10), we introduce the transverse spatial Fourier
transformation

�
(M)
ik (�r, �r ′|ωn) =

∫
d�q

(2π)2
exp[i�q(�r − �r ′)⊥]�(M)

ik (x, x ′|q2, ωn).

At infinitesimal displacement δa of the bulk conductor, a change

δσ (x) = −σ∞δ(x)δa

of the conductivity σ(x) occurs. Therefore, formula (10) for the Casimir force can be rewritten
in the final form:

f = F

A
= kT

∫ ∞

0

dq2

4π

∞∑
n=0

′
σ∞�

(M)
ii (x, x ′|q2, ωn)

∣∣∣∣
x→0,x ′→0

(13)

where A is the area of the slabs. We interpret the limiting process in equation (13) as one
in which x and x ′ tend to the interface from opposite sides, x → −0 and x ′ → +0. The
formula (13) defines the force acting on unit area of the bulk conductor from the metal film.
The positive force corresponds to the repulsion of bodies and the negative one to the attraction.
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In terms of ‘transverse electric’ and ‘transverse magnetic’ Green functions ge and gm [4],
we have

lim
x,x ′→0

�
(M)
ii (x, x ′) = lim

x,x ′→0

[
ωng

e(x, x ′) − ω−1
n

(
∂x

1

ε∞
∂ ′

x +
q2

ε∞

)
gm(x, x ′)

]

where ge and gm are defined by

[−∂2
x + q2 + ω2

nε(x|ωn)]g
e(x, x ′) = δ(x − x ′) (14)

and [
−∂x

1

ε(x|ωn)
∂x +

q2

ε(x|ωn)
+ ω2

n

]
gm(x, x ′) = δ(x − x ′). (15)

Here

ε(x|ωn) = 1 +
σ(x|iωn)

ωn

(16)

is the effective dielectric permittivity of a metal taken at the imaginary frequency.
Thus, to analyse the temperature dependence of the Casimir force we should solve the set

of equations (14), (15) and substitute the obtained function �
(M)
ii (x = 0, x ′ = 0|q2, ωn) into

equation (13).

3. The temperature dependence of the Casimir force

While solving the set of equations (14) and (15), we are interested in Green functions with the
argument x ′ within the region SIV occupied by the bulk conductor. For x ′ ∈ SIV, the general
solutions of equations (14) and (15) have the following form:

g
(e,m)
I = Aekx−κ∞x ′

g
(e,m)
II = (B1eκx + B2e−κx)e−κ∞x ′

g
(e,m)
III = (C1ekx + C2e−kx)e−κ∞x ′

ge
IV = (2κ∞)−1(e−κ∞|x−x ′| + re−κ∞(x+x ′))

gm
IV = ε∞(2κ∞)−1(e−κ∞|x−x ′| + re−κ∞(x+x ′))

where

k =
√

q2 + ω2
n κ∞ =

√
q2 + ε∞ω2

n κ =
√

q2 + εω2
n.

Determining constants A, B1,2, C1,2 and r from the boundary conditions to equations (14)
and (15), we obtain for the difference

�
(M)
ii (a) − �

(M)
ii (a → ∞) ≡ reg�

(M)
ii (a) (17)

the expression

reg�
(M)
ii (a) = −kσ−1

∞
2εkd exp(−2ka)

2 + εkd[1 − exp(−2ka)]
+ · · · . (18)

This formula is derived under inequalities (6) and

d � δ0 = c/ωp. (19)

Dots in equation (18) denote terms of higher order of the small parameter d/δ0. The
procedure (17) of the regularization of the Green function allows us to avoid the ‘surface’
divergence in the Casimir force. The divergent term does not depend on the separation a
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between the plates and represents an addition to the renormalized Casimir force. According
to equations (13) and (18), the expression for this force is

f = −kT

∫ ∞

0

dq2

2π

∞∑
n=0

′
εk2d exp(−2ka)

2 + εkd[1 − exp(−2ka)]
. (20)

For Casimir’s interaction of sufficiently thin films, the characteristic frequencies of the
fluctuating electromagnetic field turn out to be much less than the parameter c/a. In this
case, one can neglect the relativistic retarding effect and passage to the limit c → ∞ [24,25].
This allows us to assume k = q in equation (20) for the characteristic frequencies and to
approximate the Casimir force as

f = − B

4πβa3

∫ ∞

0
dx x3I (x)e−x β = 1

kT
(21)

where x = 2qa is the new variable of integration, symbol I (x) denotes the sum of the series:

I (x) =
∞∑

n=0

′
1

n(n + C) + BF(x)
(22)

with the parameters

B = ω2
pβ2

(4π)2

d

a
C = βν

2π

and the function F(x) = x(1 − e−x).
In the case (6), the temperature-dependent part of the Casimir force can be calculated

by means of equation (21) without using the summation formula (12) for the Casimir force.
However, the analysis of the spectral integrals in (12) is useful in determining the characteristic
frequencies which provide the main contribution to the Casimir force f . Let us recall that the
contribution f0 of the vacuum fluctuating electromagnetic field to the Casimir force is defined
by the spectral density of energy taken at the imaginary frequency whereas the contribution
�f (T ) of the thermal radiation of the system is related to the imaginary part of the spectral
density at the real frequencies. The force f0 related to the vacuum fluctuations is evaluated by
equation (5). It disappears as the film thickness decreases, d → 0.

Now consider the temperature-dependent part of the Casimir force. According to
equations (12) and (21), we have

�f (T ) = − BC

4πa3

∫ ∞

0
dx x3e−x

∫ ∞

0
dτ(e2πτ − 1)−1 τ

(τ 2 − BF(x))2 + C2τ 2
(23)

where τ = 2πβω. At C → 0, this expression can be approximated as

�f (T ) = − B

4a3

∫ ∞

0
dx x3e−x

∫ ∞

0
dτ(e2πτ − 1)−1δ[τ 2 − BF(x)]

= − ωcβ

32πa3

∫ ∞

0
dx x3e−xF − 1

2 (x)(e
1
2 βωc

√
F(x) − 1)−1. (24)

The corresponding characteristic frequency ωc = ωp

√
d/a of the Casimir interaction is less

than the parameter kT /h̄ (βωc � 1) for sufficiently small thicknesses d. In this case

�f (T ) = −ζ(3)
kT

8πa3
− f0 + · · · (25)

where the symbol · · · denotes terms of higher order of the smallness. Thus,

f (T ) = f0 + �f (T ) = −ζ(3)
kT

8πa3
+ · · · . (26)
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Asymptotics (26) can be shown to be valid at B, C � 1 as well as for B, 1 � C. In terms of
the characteristic frequencies these inequalities give

ωc � max

(
kT

h̄
,

√
ν

kT

h̄

)
. (27)

If the inverse inequality is fulfilled we obtain the evaluation equation (7).
The surprising things are that formula (26) coincides with equation (5) for the Casimir

force of the bulk metals and that f (T ) does not disappear even at d → 0. The difference
between the cases of the bulk materials and the thin films consists only in the inequality
defining the high-temperature regime. This is the specific feature of the Casimir attraction of
the metals. In contrast to dielectrics, a significant reduction of the characteristic frequencies
of the thermal fluctuations in a metal film occurs if the film thickness decreases. In its turn,
this leads to the growth of the effective dielectric permittivity (16) of the conductor and, as is
evident from equation (18), to a disappearance of the dependence of the temperature Green
function, reg�, on the sample thickness. It is precisely this fact that results eventually in
the unexpected insensitivity of the Casimir force to the thickness d in the high-temperature
regime (27).

Using the asymptotics (7) and (26), we can obtain the following evaluating formula for
the Casimir force:

f ∝ −
(

kT +
h̄ω2

c

ν + ωc

)
1

a3
. (28)

It is necessary to keep in mind that equation (28) is obtained under condition (6) for the
frequency ωc and for sufficiently thin films with d satisfying the inequality (19).

4. Discussion

The theoretical description of the temperature dependence of the Casimir force between a bulk
conductor and a thin metal film is given in this letter. In the general case, the Casimir force can
be presented as a sum (12) of temperature-dependent and vacuum contributions of fluctuating
electromagnetic field. We have obtained the surprising result for the situation of sufficiently
thin films (or sufficiently high temperatures), equation (27). The Casimir force equation (26)
has proved to be independent of the sample thickness in the main approximation. This fact is
characteristic precisely for metals because the Casimir force for dielectric films with a constant
value of ε vanishes at d → 0.

Mathematically, the above-mentioned d independence of the Casimir attraction of the
metal film in the regime (27) is connected to the proportionality of the characteristic frequency
ωc of the thermal fluctuations to the thickness of the film and to the significant reduction of
ωc with the decrease of d . The existence of the characteristic low-frequency regime in the
Casimir attraction of sufficiently thin metal films is physically caused by the strong classical
long-wavelength fluctuations of the conduction current and the plasmic shielding of the
electromagnetic modes. These peculiarities add to the list of the characteristic features [20,21]
of the Casimir effect for metals.

Let us discuss the possibility of observing the temperature contributions to the Casimir
force. The high-temperature regime (27) can be realized for films of semimetals (such as Bi,
Sb, As) with electron density n ≈ 1018 cm−3 and plasma frequency ωp ≈ 1014 s−1. The
Casimir force for films with d ≈ 10−6 cm, and ν ≈ 1012 s−1 at separation of about 0.1 µm and
T = 300 K is described by the asymptotics (26) and measures approximately 2 dyn cm−2. For
metals with the electron density n ≈ 1023 cm−3 and the plasma frequency ωp ≈ 1016 s−1, the
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high-temperature regime (27) is practically unattainable. Therefore, only small temperature-
dependent corrections to the Casimir force can be observed. For the low-temperature regime
ωc � kT /h̄, the main term in the Casimir force is described by equation (7). The temperature
correction may be obtained from equation (21). Under conditions of the ‘infra-red skin effect’,
ν � ωc, the following asymptotics is valid,

f (T ) = −0.0175h̄ωp

√
ad

a4
− π2h̄ν

6da2

(
kT

h̄ωp

)2

. (29)

The Casimir force for copper films with d ≈ 10−6 cm, ν ≈ 1014 s−1 at separation of about
0.1 µm and T = 300 K measures approximately 10 dyn cm2. The 30% relative increase of
the temperature results in about 3% relative change in the Casimir force.

In conclusion, let us emphasize the entropy origin of the Casimir force (26). As follows
from (26), the free energy of the Casimir interaction is of the form

F = −ζ(3)
kT

16πa2
A. (30)

Hence, the entropy of interaction is

S = 1.2
A

16πa2
. (31)

In contrast to the free energy and entropy, the energy E of interaction calculated by the formula

E = ∂

∂β
(βF) (32)

vanishes at d → 0.

Appendix. Summation formula for the Casimir force

We transform the sum equation (10) over Matsubara’s frequencies ωn into the ‘spectral’
integrals using the Abel–Plana formula for summing a series:

lim
n→∞

{ n∑
k=1

F(k) −
∫ n+θ

θ

dx F(x)

}

=
∫ θ−i∞

θ

dz F (z)(e2iπz − 1)−1 +
∫ θ+i∞

θ

dz F (z)(e−2iπz − 1)−1 (A.1)

where the function F(z) is regular in the half-plane Re z > 0 and satisfies the inequality

|F(x + iy)| < f (x)ea|y| (a < 2π).

The function f (x) is bounded at x → ∞; 0 < θ < 1. The applicability of the Abel–Plana
formula (A.1) to the expression for Casimir’s force (10) is ensured by the analytical properties
of the conductivity σ (M) and of the Green function �(M) in the upper half-plane of the complex
frequency [22, 23]. Then, we make the limiting transition θ → 0+ in equation (A.1) (0+ is an
infinitesimal positive parameter). The final transformations are carried out with regard to the
formulae

�(M)(ωn) = �(i|ωn|) �(ω) = �(M)
(ω

i
+ 0+

)
(A.2)

where � is the retarding Green function of the electromagnetic field, and the symmetry relations

σ ∗(−ω) = σ(ω) �∗(−ω) = �(ω). (A.3)

As a result, we obtain equation (12) for the Casimir force expressed in terms of the spectral
integrals.
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